

**Climate Change** 

## Copernicus Regional Reanalysis for Europe

2<sup>nd</sup> Baltic Earth conference, Helsingør, 15/06/2018 <u>Semjon Schimanke</u>, Per Undén, Martin Ridal, Ludvig Isaksson and Lisette Edvinsson







#### What's the service about?

- <u>Operational</u> production of a regional reanalysis (RRA) for Europe in near real-time
- Long series of freely available RRA
  - Starting 1961 with a horizontal resolution of 11km
- User support and guidance





#### <u>Over</u>view

- 1. Introduction/Background
- 2. The RRA system and available data
- 3. Data quality and homogeneity
- 4. Summary





## 1. Introduction/Background





#### The pre-operational FP7 project



- <u>UERRA</u>: Uncertainties in Ensembles of Regional ReAnalysis <u>www.uerra.eu</u>
- 12 European partners
- Three different RRA plus ensembles





#### Why reanalysis?



Drawbacks of observations

- Gaps in space
- Breaks in time
- Inhomogeneous



European Commissio



SMHI CECMWF Opernicus

Swedens stations network



#### The basics of reanalyses

2018





NWP model and analysis system remain fixed

Reanalysis quality remains the same or improving

- Usage of as many observations as possible including quality control
- Usage of a fixed system for the entire period

→ That's called a reanalysis.

### Advantages:

- No gaps in room or time
- Complete parameter set
- Homogeneous in time







1961



## 2. The RRA systems and available data





- UERRA system
  - HARMONIE cycle 38h1, ALADIN physics
  - ERA40/ERA-interim as lateral boundary
  - Assimilation of conventional observations
  - 3D-VAR data assimilation
  - 4 cycles per day, forecast lengths 6h and 30h
  - 11km resolution (565x565) and
     65 vertical levels
- MESCAN-SURFEX
  - Optimal interpolation (OI)
  - 5.5km resolution





#### Available data

- 11km horizontal resolution including entire Europe
- Period 1961-Feb. 2018 with monthly updates
- Hourly resolution (4 analysis per day and hourly resolution from the forecast model)
  - 31 surface parameters,
    9 parameters on pressure levels,
    7 parameters on height levels,
    4 parameters on model levels
    2 parameters on soil levels
- Additional output from MESCAN-SURFEX (surface and soil)







#### Data access

#### http://apps.ecmwf.int/



- All UFRRA data is already freely available! (1961-Feb. 2018)
- All you need is to register!
- **UFRRA** data 480 TB

opernicus

European Commission

**C**ECMWF

Top of page



# 3. Data quality and homogenity



#### Verification



Climate

Change

- Verification tools are part of the quality control during the production
- Smaller bias and std than ERA-interim, e.g. T2m, wind speed, precipitation
- Some parameters not better than ERAinterim, e.g. RH2m





#### Quality of wind speed

|               | ERA-interim    | Downscaling<br>with RCA | EURO4M         | UERRA         |
|---------------|----------------|-------------------------|----------------|---------------|
| RMSE          | 2.36           | 2.36                    | 1.88           | 1.80          |
| Correlation   | 0.79           | 0.75                    | 0.83           | 0.85          |
| Quality of wi | nd speed at Su | undich anastal          | stations based | h an 6 haurbu |

Quality of wind speed at Swedish coastal stations based on 6 hourly data for a 10year period (1996-2005)

|                               | Horizontal resolution | Resolution<br>in time |
|-------------------------------|-----------------------|-----------------------|
| ERA-interim                   | 80 km                 | 3 hourly              |
| Dynamical downscaled with RCA | 11 km                 | hourly                |
| EURO4M                        | 22 km                 | 3 hourly              |
| UERRA                         | 11 km                 | hourly                |







### **Risks for inhomogeneity**

 Switch of lateral boundary data

**C**ECMWF

- 1961-1978 ERA40
- 1979- ERA-interim

opernicus

European

 Increasing numbers of observations in time, especially aircraft data



#### Homogeneity



Yearly averages of the standard deviation and mean of the forecast difference fc30-fc06 during winter (DJF). Left: 100m wind speed. Right: 500 hPa geopotential. Curtesy Adam von Kraemer.

Investigations of the <u>forecast</u> <u>skill</u> (differences between fc30 and fc6):

- Forecast skill effects accuracy of the first guess and has herewith consequences on the data quality
- Increase of quality with the switch to ERA-interim and increasing numbers of observations (upper air)
- Less pronounced for surface parameters (<u>T2m</u>)

European

CECMW



#### User support



- User guide
- Homepage <u>https://climate.copernicu</u> <u>s.eu/copernicus-climate-</u> <u>change-service-regional-</u> <u>reanalysis-europe</u>
- Git server with example scripts
   <u>https://git.smhi.se/C3S\_3</u>
   <u>22\_Lot1/C3S\_322\_Lot1\_u</u>
   <u>ser\_examples</u>





#### Summary

- The service offers:
  - Based on the RRA from the FP7 UERRA project, hourly data at 11km resolution from 1961 to near real time for Europe
  - A comprehensive set of output parameters for the surface, the upper air, and the soil
  - User guidance and support
- Data quality improves compared to global products
- Some inhomogeneity due to the change from ERA40 to ERA-interim









#### Model systems

## **UERRA** system

- HARMONIE cycle 38h1 (ALADIN physics)
- ERA40 and ERA-interim as LBC
- 4 cycles per day
- No satellite data

### New system

- HARMONIE cycle 40.1h/42 (ALADIN physics)
- New soil model and analysis
- ERA5 as LBC
- 8 cycles per day
- Satellite radiances, e.g. IASI, SEVERI, MSU, AMSU
- Usage of ERA5 ODB files, e.g. blacklisting information
- More obs-data, e.g. GBGNSS





## 2. Operational production





#### Challenges for operational production

- More automatization, e.g.
  - Checks of input data (LBC and observations)
  - Checks of output data (number of files, quality controls, etc.)
  - Automatic job submission
  - Notifications via mail in case of abnormality
- Continual quality control
  - Monthly quality checks, e.g. visual check of verification scores, observation usage, bias corrections, etc.
  - Team of 3-4 people will be involved in checks and production





#### Model systems: differences

## **UERRA** system

- 11 km (565x565 grid points)
- 65 levels (10hPa)
- Surface downscaling analysis 5.5 km (MESCAN)



## New system

- 5.5 km (~1100x1050 grid points)
- ~100 levels (1hPa)
- Surface analysis at 5.5 km as part of the system
- Plus 10 ensemble members at 11km and coupling to data assimilation





### Model systems: differences

| UERRA system                            | New system                                             |
|-----------------------------------------|--------------------------------------------------------|
| HARMONIE cycle 38h1<br>(ALADIN physics) | HARMONIE cycle 40.1h/42<br>(ALADIN physics)            |
| SURFEX 7.3                              | SURFEX 7.3 with updates or SURFEX 8.0                  |
| ERA40 and ERA-interim as LBC            | ERA5 as LBC                                            |
| 4 cycles per day                        | 8 cycles per day                                       |
| No satellite data                       | Satellite radiances, e.g. IASI,<br>SEVERI, MSU, AMSU   |
|                                         | Usage of ERA5 ODB files, e.g. blacklisting information |
|                                         | More obs-data, e.g. GBGNSS                             |







# 4. User guidance and support





#### User support and guidance

- Technical support will be available through CDS
- Training material as well as a collection of best practice examples
- There are plenty of possible usage ideas. However, we are looking for user!
- Two user workshops (first November 2018)

Regional climate change reports





Climate related products, e.g. season maps





<u>Adam von Kraemer</u>: Temporal consistency of the UERRA Regional Reanalysis: Investigating the Forecast Skill

- T2m, wind speed at 100 meters, 500 hPa geopotential
- Land points only
- Comparison ERA40 vs. ERA-int
- Influence from observing system after 1979
- Difference between fc30 and fc6 (forecast skill)
- Forecast skill effects accuracy of the first guess and has herewith consequences on the data quality
- The data has lower quality in the beginning
- Largest change of forecast skill in 1979





#### Forecast skill T2m







#### Model systems: common base

- HARMONIE-ALADIN system
- 3D-VAR data assimilation
- Large scale constraint (J<sub>k</sub>)
- Incremental digital filter initialization









|                       |     | 1978-12-02 1978-12-03 |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |
|-----------------------|-----|-----------------------|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|
| Forecast starting at  | 17  | 18                    | 19 | 20 | 21 | 22 | 23 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 0 | 1 | 2 | 3 |
| 1978-12-02 0 UTC      |     |                       |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |
| 1978-12-02 6 UTC      |     |                       |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |
| 1978-12-02 12 UTC     |     |                       |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |
| 1978-12-02 18 UTC     |     |                       |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |
| 1978-12-03 0 UTC      |     |                       |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |
| 1978-12-03 6 UTC      |     |                       |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |
| 1978-12-03 12 UTC     |     |                       |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |
| 1978-12-03 18 UTC     |     |                       |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |
| 1978-12-04 0 UTC      |     |                       |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |
|                       |     |                       |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |
| Number of available t | ime | ste                   | ps |    |    |    |    | 4 | 1 | 1 | 2 | 1 | 1 | 4 | 1 | 1 | 3 | 1  | 1  | 4  | 1  | 1  | 2  | 1  | 1  | 4  | 1  | 1  | 3  | 1  | 1  |   |   |   |   |





- <u>Operational</u> production of a regional reanalysis (RRA) for Europe in near real-time
- <u>Long series</u> of freely available RRA
  - Starting 1961 with a horizontal resolution of 11km
  - Starting in the early 1980s with a resolution of 5.5km (under development)
- User support and guidance





